Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nat Biomed Eng ; 7(5): 661-671, 2023 05.
Article in English | MEDLINE | ID: covidwho-20234008

ABSTRACT

The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.


Subject(s)
Integrases , Lentivirus , Humans , Lentivirus/genetics , Integrases/genetics , Integrases/metabolism , Gene Knock-In Techniques , Transgenes/genetics , Recombinational DNA Repair
2.
Curr Protoc ; 3(4): e759, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2304017

ABSTRACT

Mother-to-fetus transmission of the SARS-CoV-2 virus via the placenta has been reported but cannot readily be studied in pregnant women. This protocol describes an in vitro method to investigate SARS-CoV-2 infection of human embryonic stem cells (hESCs), which are similar to epiblast cells in young postimplantation embryos. First, SARS-CoV-2 viral pseudoparticles, which contain the spike protein and a fluorescent reporter, are incorporated into a lentivirus backbone that is expanded in HEK 293T cells. Then, an infection assay based on hESCs is used with the viral pseudoparticles. An application of the infection assay in therapeutic drug screening is provided. This protocol allows infection of hESCs by SARS-CoV-2 pseudoparticles to be studied in vitro and can be used in conjunction with other assays to understand and potentially prevent infection. hESCs could also be differentiated to study infection in the three germ layers and their fetal cell derivatives. This disease-in-a-dish model could be readily applied to other hESC lines, and to other viral infections, that affect human prenatal development. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparing HEK 293T cells for lentiviral vector transfection Support Protocol 1: Visual inspection of transfected HEK 293T cells Basic Protocol 2: Generating viral pseudoparticles Support Protocol 2: Determining viral titer with HEK 293T-ACE2 cells Basic Protocol 3: Plating hESCs for the infection assay Support Protocol 3: Evaluating transduction efficiency.


Subject(s)
COVID-19 , Female , Humans , Pregnancy , SARS-CoV-2 , Lentivirus/genetics , Transfection , Cell Differentiation
3.
Microbiol Spectr ; 11(1): e0378922, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193579

ABSTRACT

Neutralization assays are important for understanding and quantifying neutralizing antibody responses toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 lentivirus surrogate neutralization assay (SCLSNA) can be used in biosafety level 2 (BSL-2) laboratories and has been shown to be a reliable alternative approach to the plaque reduction neutralization test (PRNT). In this study, we optimized and validated the SCLSNA to assess its ability as a comparator and prescreening method to support the PRNT. Comparability between the PRNT and SCLSNA was determined through clinical sensitivity and specificity evaluations. Clinical sensitivity and specificity assays produced acceptable results, with 100% (95% confidence interval [CI], 94% to 100%) specificity and 100% (95% CI, 94% to 100%) sensitivity against ancestral Wuhan spike-pseudotyped lentivirus. The sensitivity and specificity against B.1.1.7 spike-pseudotyped lentivirus were 88.3% (95% CI, 77.8% to 94.2%) and 100% (95% CI, 94% to 100%), respectively. Assay precision measuring intra-assay variability produced acceptable results for high (50% PRNT [PRNT50], 1:≥640), mid (PRNT50, 1:160), and low (PRNT50, 1:40) antibody titer concentration ranges based on the PRNT50, with coefficients of variation (CVs) of 14.21%, 12.47%, and 13.28%, respectively. Intermediate precision indicated acceptable ranges for the high and mid concentrations, with CVs of 15.52% and 16.09%, respectively. However, the low concentration did not meet the acceptance criteria, with a CV of 26.42%. Acceptable ranges were found in the robustness evaluation for both intra-assay and interassay variability. In summary, the validation parameters tested met the acceptance criteria, making the SCLSNA method fit for its intended purpose, which can be used to support the PRNT. IMPORTANCE Neutralization studies play an important role in providing guidance and justification for vaccine administration and helping prevent the spread of diseases. The neutralization data generated in our laboratory have been included in the decision-making process of the National Advisory Committee on Immunization (NACI) in Canada. During the coronavirus 2019 (COVID-19) pandemic, the plaque reduction neutralization test (PRNT) has been the gold standard for determining neutralization of SARS-CoV-2. We validated a SARS-CoV-2 lentivirus surrogate neutralization assay (SCLSNA) as an alternative method to help support the PRNT. The advantages of using the SCLSNA is that it can process more samples, is less tedious to perform, and can be used in laboratories with a lower biosafety level. The use of the SCLSNA can further expand our capabilities to help fulfill the requirements for NACI and other important collaborations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Neutralization Tests/methods , Antibodies, Viral , Lentivirus/genetics , Antibodies, Neutralizing
4.
J Virol ; 97(2): e0194722, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193457

ABSTRACT

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Subject(s)
CD13 Antigens , Deltacoronavirus , Spike Glycoprotein, Coronavirus , Virus Internalization , Animals , CD13 Antigens/genetics , CD13 Antigens/metabolism , Chickens/metabolism , Coronavirus Infections , Deltacoronavirus/metabolism , Swine , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Lentivirus/genetics , Lentivirus/metabolism
5.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653430

ABSTRACT

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
6.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580414

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a severe global pandemic. Mice models are essential to investigate infection pathology, antiviral drugs, and vaccine development. However, wild-type mice lack the human angiotensin-converting enzyme 2 (hACE2) that mediates SARS-CoV-2 entry into human cells and consequently are not susceptible to SARS-CoV-2 infection. hACE2 transgenic mice could provide an efficient COVID-19 model, but are not always readily available, and practically restricted to specific strains. Therefore, there is a dearth of additional mouse models for SARS-CoV-2 infection. We applied lentiviral vectors to generate hACE2 expression in interferon receptor knock-out (IFNAR1-/-) mice. Lenti-hACE2 transduction supported SARS-CoV-2 replication in vivo, simulating mild acute lung disease. Gene expression analysis revealed two modes of immune responses to SARS-CoV-2 infection: one in response to the exposure of mouse lungs to SARS-CoV-2 particles in the absence of productive viral replication, and the second in response to productive SARS-CoV-2 infection. Our results infer that immune response to immunogenic elements on incoming virus or in productively infected cells stimulate diverse immune effectors, even in absence of type I IFN signaling. Our findings should contribute to a better understanding of the immune response triggered by SARS-CoV-2 and to further elucidate COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Disease Models, Animal , Lentivirus/genetics , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cell Line , Humans , Immunity/genetics , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Transduction, Genetic , Virus Replication
7.
J Virol ; 95(22): e0096621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1561933

ABSTRACT

The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein's function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.


Subject(s)
Genetic Vectors/physiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Cell Line , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Lentivirus/genetics , Mutation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Viral Load/genetics
8.
Expert Rev Vaccines ; 20(12): 1571-1586, 2021 12.
Article in English | MEDLINE | ID: covidwho-1455077

ABSTRACT

INTRODUCTION: Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED: Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION: Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.


Subject(s)
Communicable Diseases , Genetic Vectors , Lentivirus , Vaccine Development , Viral Vaccines , Animals , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Humans , Lentivirus/genetics , Vaccination
9.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
10.
FASEB J ; 35(9): e21801, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345745

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in mediating viral entry into host cells. However, whether it contributes to pulmonary hyperinflammation in patients with coronavirus disease 2019 is not well known. In this study, we developed a spike protein-pseudotyped (Spp) lentivirus with the proper tropism of the SARS-CoV-2 spike protein on the surface and determined the distribution of the Spp lentivirus in wild-type C57BL/6J male mice that received an intravenous injection of the virus. Lentiviruses with vesicular stomatitis virus glycoprotein (VSV-G) or with a deletion of the receptor-binding domain (RBD) in the spike protein [Spp (∆RBD)] were used as controls. Two hours postinfection (hpi), there were 27-75 times more viral burden from Spp lentivirus in the lungs than in other organs; there were also about 3-5 times more viral burden from Spp lentivirus than from VSV-G lentivirus in the lungs, liver, kidney, and spleen. Deletion of RBD diminished viral loads in the lungs but not in the heart. Acute pneumonia was observed in animals 24 hpi. Spp lentivirus was mainly found in SPC+ and LDLR+ pneumocytes and macrophages in the lungs. IL6, IL10, CD80, and PPAR-γ were quickly upregulated in response to infection in the lungs as well as in macrophage-like RAW264.7 cells. Furthermore, forced expression of the spike protein in RAW264.7 cells significantly increased the mRNA levels of the same panel of inflammatory factors. Our results demonstrated that the spike protein of SARS-CoV-2 confers the main point of viral entry into the lungs and can induce cellular pathology. Our data also indicate that an alternative ACE2-independent viral entry pathway may be recruited in the heart and aorta.


Subject(s)
Macrophages/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Spike Glycoprotein, Coronavirus/immunology , Acute Disease , Alveolar Epithelial Cells/virology , Animals , B7-1 Antigen , Cell Line , Inflammation Mediators , Interleukin-10 , Interleukin-6 , Lentivirus/genetics , Lentivirus/isolation & purification , Lentivirus/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/virology , Male , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , PPAR gamma , RAW 264.7 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins
11.
J Virol Methods ; 295: 114221, 2021 09.
Article in English | MEDLINE | ID: covidwho-1284316

ABSTRACT

SARS-CoV-2 is the culprit causing Coronavirus Disease 2019 (COVID-19). For the study of SARS-CoV-2 infection in a BSL-2 laboratory, a SARS-CoV-2 pseudovirus particle (SARS2pp) production and infection system was constructed by using a lentiviral vector bearing dual-reporter genes eGFP and firefly luciferase (Luc2) for easy observation and analysis. Comparison of SARS2pp different production conditions revealed that the pseudovirus titer could be greatly improved by: 1) removing the last 19 amino acids of the spike protein and replacing the signal peptide with the mouse Igk signal sequence; 2) expressing the spike protein using CMV promoter other than CAG (a hybrid promoter consisting of a CMV enhancer, beta-actin promoter, splice donor, and a beta-globin splice acceptor); 3) screening better optimized spike protein sequences for SARS2pp production; and 4) adding 1 % BSA in the SARS2pp production medium. For infection, this SARS2pp system showed a good linear relationship between MOI 2-0.0002 and then was successfully used to evaluate SARS-CoV-2 infection inhibitors including recombinant human ACE2 proteins and SARS-CoV-2 neutralizing antibodies. The kidney, liver and small intestine-derived cell lines were also found to show different susceptibility to SARSpp and SARS2pp. Given its robustness and good performance, it is believed that this pseudovirus particle production and infection system will greatly promote future research for SARS-CoV-2 entry mechanisms and inhibitors and can be easily applied to study new emerging SARS-CoV-2 variants.


Subject(s)
Neutralization Tests/methods , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Cell Line , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lentivirus/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion , Virus Internalization/drug effects
12.
Hum Gene Ther ; 32(11-12): 541-562, 2021 06.
Article in English | MEDLINE | ID: covidwho-1216585

ABSTRACT

Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.


Subject(s)
COVID-19 Vaccines/pharmacology , Genetic Vectors , Vaccines, Attenuated/pharmacology , Vaccines, Synthetic/pharmacology , Viral Structural Proteins/chemistry , Adenoviridae/genetics , Genetic Therapy/methods , Genetic Vectors/chemistry , Genetic Vectors/genetics , Humans , Lentivirus/genetics , SARS-CoV-2/genetics , Vaccines, DNA/pharmacology , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
13.
Emerg Microbes Infect ; 10(1): 894-904, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1209882

ABSTRACT

Neutralizing antibodies to SARS-CoV-2 have been shown to correlate with protection in animals and humans, disease severity, survival, and vaccine efficacy. With the ongoing large-scale vaccination in different countries and continuous surge of new variants of global concerns, a convenient, cost-effective and high-throughput neutralization test is urgently needed. Conventional SARS-CoV-2 neutralization test is tedious, time-consuming and requires a biosafety level 3 laboratory. Despite recent reports of neutralizations using different pseudoviruses with a luciferase or green fluorescent protein reporter, the laborious steps, inter-assay variability or high background limit their high-throughput potential. In this study we generated lentivirus-based pseudoviruses containing a monomeric infrared fluorescent protein reporter to develop neutralization assays. Similar tropism, infection kinetics and mechanism of entry through receptor-mediated endocytosis were found in the three pseudoviruses generated. Compared with pseudovirus D614, pseudovirus with D614G mutation had decreased shedding and higher density of S1 protein present on particles. The 50% neutralization titers to pseudoviruses D614 or D614G correlated with the plaque reduction neutralization titers to live SARS-CoV-2. The turn-around time of 48-72 h, minimal autofluorescence, one-step image quantification, expandable to 384-well, sequential readouts and dual quantifications by flow cytometry support its high-throughput and versatile applications at a non-reference and biosafety level 2 laboratory, in particular for assessing the neutralization sensitivity of new variants by sera from natural infection or different vaccinations during our fight against the pandemic.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Ammonium Chloride/pharmacology , Animals , Antigen-Antibody Reactions , Blotting, Western , COVID-19/blood , Chlorocebus aethiops , Convalescence , Defective Viruses/genetics , Genes, Reporter , Genetic Vectors/immunology , HEK293 Cells , HIV-1/genetics , Humans , Immunoglobulin G/immunology , Lentivirus/genetics , Mutagenesis, Site-Directed , Pandemics , Point Mutation , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
14.
Viruses ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1194712

ABSTRACT

SARS-CoV-2 virus was first detected in late 2019 and circulated globally, causing COVID-19, which is characterised by sub-clinical to severe disease in humans. Here, we investigate the serological antibody responses to SARS-CoV-2 infection during acute and convalescent infection using a cohort of (i) COVID-19 patients admitted to hospital, (ii) healthy individuals who had experienced 'COVID-19 like-illness', and (iii) a cohort of healthy individuals prior to the emergence of SARS-CoV-2. We compare SARS-CoV-2 specific antibody detection rates from four different serological methods, virus neutralisation test (VNT), ID Screen® SARS-CoV-2-N IgG ELISA, Whole Antigen ELISA, and lentivirus-based SARS-CoV-2 pseudotype virus neutralisation tests (pVNT). All methods were able to detect prior infection with COVID-19, albeit with different relative sensitivities. The VNT and SARS-CoV-2-N ELISA methods showed a strong correlation yet provided increased detection rates when used in combination. A pVNT correlated strongly with SARS-CoV-2 VNT and was able to effectively discriminate SARS-CoV-2 antibody positive and negative serum with the same efficiency as the VNT. Moreover, the pVNT was performed with the same level of discrimination across multiple separate institutions. Therefore, the pVNT is a sensitive, specific, and reproducible lower biosafety level alternative to VNT for detecting SARS-CoV-2 antibodies for diagnostic and research applications. Our data illustrate the potential utility of applying VNT or pVNT and ELISA antibody tests in parallel to enhance the sensitivity of exposure to infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lentivirus/genetics , Male , Middle Aged , Neutralization Tests , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1172672

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike-receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.


Subject(s)
Antiviral Agents/pharmacology , Catechin/analogs & derivatives , SARS-CoV-2/drug effects , Tea/chemistry , Animals , Betacoronavirus/drug effects , Betacoronavirus/physiology , COVID-19/prevention & control , COVID-19/virology , Catechin/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , HEK293 Cells , Humans , Lentivirus/drug effects , Lentivirus/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
16.
J Biol Chem ; 296: 100306, 2021.
Article in English | MEDLINE | ID: covidwho-1152462

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Clathrin Heavy Chains/genetics , Endocytosis/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Clathrin Heavy Chains/antagonists & inhibitors , Clathrin Heavy Chains/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Hydrazones/pharmacology , Lentivirus/genetics , Lentivirus/metabolism , Protein Binding/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology , Thiazolidines/pharmacology , Vero Cells
17.
Viruses ; 13(2)2021 01 31.
Article in English | MEDLINE | ID: covidwho-1069882

ABSTRACT

Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Genetic Therapy/methods , Genetic Vectors/genetics , Animals , Antiviral Agents , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Humans , Lentivirus/genetics , SARS-CoV-2/isolation & purification
18.
Commun Biol ; 4(1): 129, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1054066

ABSTRACT

Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Adult , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Female , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Immune Sera/chemistry , Immunity, Humoral , Lentivirus/genetics , Lentivirus/immunology , Male , Middle Aged , Neutralization Tests , Phosphoproteins/chemistry , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
19.
Viruses ; 13(2)2021 01 24.
Article in English | MEDLINE | ID: covidwho-1052508

ABSTRACT

The 3C-like protease (3CLpro) of SARS-CoV-2 is considered an excellent target for COVID-19 antiviral drug development because it is essential for viral replication and has a cleavage specificity distinct from human proteases. However, drug development for 3CLpro has been hindered by a lack of cell-based reporter assays that can be performed in a BSL-2 setting. Current efforts to identify 3CLpro inhibitors largely rely upon in vitro screening, which fails to account for cell permeability and cytotoxicity of compounds, or assays involving replication-competent virus, which must be performed in a BSL-3 facility. To address these limitations, we have developed a novel cell-based luciferase complementation reporter assay to identify inhibitors of SARS-CoV-2 3CLpro in a BSL-2 setting. The assay is based on a lentiviral vector that co-expresses 3CLpro and two luciferase fragments linked together by a 3CLpro cleavage site. 3CLpro-mediated cleavage results in a loss of complementation and low luciferase activity, whereas inhibition of 3CLpro results in 10-fold higher levels of luciferase activity. The luciferase reporter assay can easily distinguish true 3CLpro inhibition from cytotoxicity, a powerful feature that should reduce false positives during screening. Using the assay, we screened 32 small molecules for activity against SARS-CoV-2 3CLpro, including HIV protease inhibitors, HCV protease inhibitors, and various other compounds that have been reported to inhibit SARS-CoV-2 3CLpro. Of these, only five exhibited significant inhibition of 3CLpro in cells: GC376, boceprevir, Z-FA-FMK, calpain inhibitor XII, and GRL-0496. This assay should greatly facilitate efforts to identify more potent inhibitors of SARS-CoV-2 3CLpro.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases/metabolism , Protease Inhibitors/metabolism , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Cell Survival/drug effects , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Lentivirus/genetics , Luciferases/genetics , Protease Inhibitors/pharmacology
20.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1048660

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Evaluation, Preclinical , Enoxaparin/chemistry , Enoxaparin/metabolism , Enoxaparin/pharmacology , Genetic Vectors/genetics , HEK293 Cells , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Inhibitory Concentration 50 , Lentivirus/genetics , Molecular Structure , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transduction, Genetic , Virus Attachment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL